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SUMMARY 
Local control points are established within the context of algebraic grid generation. The method of 
generation is based upon a multidirectional assembly of multisurface transformations that incorporates the 
best features of tensor product and Boolean sum constructions. Upon assembly, the resultant capability is 
the capacity to conform precisely to prescribed boundaries while being able to manipulate the grid through a 
sparse net of control points. 
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INTRODUCTION 

The development of algebraic grid generation has proceeded in a general manner to either 
establish a larger amount of control for a given direction or combine various directions with a 
lesser amount of control in such directions. The basic constructive elements are the multisurface 
transformation for a high level of control in a given direction and the Boolean sum operation for 
the combination directions.' In the applications the multisurface controls are controls over the 
shape of the co-ordinate curves which connect the opposing boundaries of a physical region. With 
the local shape control, the lateral boundaries of the region may be given a reasonably good 
approximation, although the match there is not precise. To make it precise, the various directions 
must be combined with the use of Boolean sums. The straightforward combination of general 
multisurface transformations is possible and results in the requirement to specify a number of 
intermediate control surfaces for each distinct direction. While this requirement might not present 
a large burden in two-dimensional applications, it is somewhat excessive in three dimensions. 
There are simply too many data to be specified for the level of control sought. As a consequence, 
virtually all previous combinations of directions have been done with the straightforward use of 
global Lagrange or Hermite polynomial interpolation. Such interpolation procedures are special 
cases of the multisurface transformation. The corresponding implementation has concentrated 
exclusively on the boundaries and the derivatives from the boundaries. 

With the intent of economically employing local controls throughout the entire field in a 
multidirectional context, a control point form of algebraic grid generation has been developed. 
The earlier burden of entire specified surfaces has been removed. It has been replaced by a sparse 
collection of control points from which the shape and position of co-ordinate curves can be 
manipulated while the grid conforms precisely to all boundaries, regardless of direction. Methods 
with complete boundary conformity have typically been called transfinite to reflect the matching 
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of the infinite number of points that generally describes the boundary. This terminology appears 
in contrast to tensor product interpolation which usually only matches the boundary corners: a 
finite number of points. 

THE CONSTRUCTION OF CURVES 

A fundamental part of the control point formulation is the construction of curves. This 
construction represents algebraic co-ordinate generation in a single direction wherein two 
opposing boundaries are connected by the newly created curves. With the restriction to only a 
single curve, the opposing boundaries are each represented by a point. Here the essential nature of 
the control appears in such an isolated state that its features are more transparently evident. 
Moreover, the generation process is more readily presented. 

The assumed data for the generation of a curve are just a sequence of points in space. In terms 
of co-ordinate generation, the first and last points lie on opposing boundaries and are the fixed 
endpoints of the curve. The remaining points are in the interior of the sequence and are used to 
control the shape of the curve. As such, they are called control points. 

From any one control point, the linear connection to the neighbouring point on each side gives 
a local segment from the entire piecewise linear curve connecting the successive points of the given 
sequence. The local segment about each control point then defines a change in direction. The rate 
of change is a curvature measure and thus presents a shape control when the curve follows the 
directions determined by the two linear connections attached to the given control point. This 
circumstance arises when the curve successively assumes the respective directions between each 
pair of control points. 

To enforce the successive assumptions of desired direction in a smooth manner, a continuous 
direction field is obtained by interpolation. The independent variable for the interpolation is 
simply the curve parametrization. Altogether, the interpolated result defines the field of vectors 
that are tangent to the desired curve and that is simply stated as an interpolation of first 
parametric derivatives. This determines a smooth first derivative of the entire curve. The desired 
curve is then obtained by a parametric integration. The integration here is taken so that the curve 
connects the specified endpoints. 

To state the result mathematically some notation is needed. For this purpose, let C , ,  C,,  . . . , 
C ,  be the given sequence of points in space; let r be the curve parametrization; let P(r) be the 
position at r along the desired curve; let r , ,  r 2 ,  . . . , Y,- be the successive parametric locations to 
interpolate the directions of (C2-C1), (C3-C2), . . . , (C,-CN- ,); and let $,(r) ,  +Jr) ,  . . . , +,- l(r) 
be the corresponding interpolation functions which successively separate each direction by 
assuming a non-zero value at the associated location while vanishing at the remaining locations 
for interpolation. In two dimensions CU=(xu,  y,J and P(r)=(x(r), y(r)) .  With this notation the 
curve is given by 

where 

Gu(4 = + U ( d  dP. (21 s: 
To witness the basic specifications indicated in our discussion, it is an easy matter to check the 
end conditions P(rl) = C ,  and P(r,- I )  = C ,  and the interpolatory condition that P ( r m )  is in the 
direction of (Cu+ ,-CU) for each M from 1 to N - 1. In the context of co-ordinate generation for 



ALGEBRAIC GRID GENERATION 1167 

two- or three-dimensional regions, the endpoints become boundary surfaces and the interior 
points become control surfaces. For this reason the transformation generated by curves of the 
above form has been called a multisurface transformation. 

To apply the method, the interpolation functions must be chosen. There is a wide variety of 
such choices. In broad terms these can be split between global and local functions. With local 
functions, however, the alteration of a control point (or surface) results in an alteration of the 
constructed curve (or curves) which is restricted to a local region about the point (or surface). The 
remaining regions are unaltered. Altogether, this represents an advantage since local sections can 
be manipulated in an independent manner. The development and application of such local 
controls is given in References 2 and 3, while a general overview is given in Reference 1. 

For the discussion herein a simple choice shall be made with the underlying understanding that 
other choices are possible. By restricting our attention to two-dimensional applications, it is 
sufficient to consider local piecewise linear interpolants. These produce curves that are con- 
tinuous only up to first derivatives. Moreover, a unit spacing in the interpolation points ra shall be 
assumed by setting r,=a. This causes both the interpolation functions and their integrals G, to be 
translations of a function about the origin. The overall consequence is a simply stated curve 
definition. In an analytical form the origin-centred interpolation function is given by 

1-lrl for - 1 s r s 1 ,  
otherwise 

and its integral is given by 

T o  for r < - 1, 

(3) 

With s2 increasing to a value of unity, the ratio of integrals in equation (1) reduces to just the 
integral in each numerator. This is yet another simplification. By employing the R of equation (4), 
the desired curve is now generated by 

where 
G,(r) = 2R(r- 1)- 1, Ga(r) = R(r - a), G N -  l(r) = 2!4r - M + 1) (6) 

for a=2 ,  3, . . . , N - 2 .  Since the coefficients represented by equations (4) and (6) are known 
functions, the curve of equation (5) depends only upon the sequence of points C 1 ,  C,, . . . , C,. 
Moreover, the more general form of equation (1) can always be reduced to the form of equation 
(5) by scaling each interpolation function so that GE(rN- 1. In the subsequent development 
herein this scaling shall be assumed. In the applications presented the functions in equations (4) 
and (6) are employed. These specific functions also lead to local quadradic Bezier segments, a 
coincidence that does not occur with other choices. A general schematic view of the curve 
construction is given in Figure 1.  

At this point it is important to take note of the distinctive properties of the multisurface 
construction that separate it from other methods such as the Bezier and B-spline techniques. To 
start, we shall first examine the assembly process. While the above noted specialization to local 
Bezier quadradic segments occurred, the process by which those segments were assembled was 
automatically determined so that the consequent grid spacing along the entire curve would vary 
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cN-l CN 

Figure 1. Curve construction from equations (4H6) 

continuously. This result comes from the fact that tangent vectors to the desired curve were 
interpolated. As such, the tangent field is uniquely determined in a smooth fashion. When the 
associated curve parameter is then uniformly partitioned to determine a grid, this smoothness is 
immediately reflected in the form of smooth variations in the spacing of points. By contrast, the 
direct Bezier construction can have distinct tangents at the junctures between segments: the only 
requirement there is that the tangents be parallel. From a global view of the grid on the curve, 
however, there would be discontinuities in the grid spacing at each juncture where the magnitudes 
of the tangents are distinct; the size of the jumps there would simply be given by the amount of 
discrepancy in tangent magnitudes. 

Aside from the assembly process, there is also a basic geometric distinction. As we have seen in 
our sketch of the fundamental multisurface construction, it is as if our current location were given 
by a vehicle that we were smoothly steering across a field to leave a curve demarked by tire 
tracks. As we have noted in the previous paragraph, the smoothness of our motion also yields the 
smoothness in spacing. In an even more fundamental way, however, we are in direct control of the 
curve shape for we can steer in any direction that we please and accordingly develop virtually any 
path that we want. Thus we clearly have a direct control over the curvature of the path and, in 
particular, over the convexity of the path. In a similar but distinctly weaker sense, both Bezier and 
B-spline techniques have a convexity control. In each of these techniques the path is locally seen 
to lie within the convex hull of the control points that determine the given local segment. The 
convex hull of a set of points is simply defined to be the smallest convex set which contains them. 
The techniques which satisfy this condition are said to possess a convex hull property. In the 
specific case with local quadradic Bezier segments, each such local segment is determined by only 
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three control points. In terms of the convex hull property, the segment must lie within the triangle 
defined by the three points. In terms of actively steering the curve, the tangent vectors at each end 
must assume the respective directions determined by the two successive vectors obtained by 
taking the differences between successive control points. In this special case the endpoints of the 
curve segment also lie on the two line segments which join the successive control points. 
Altogether, the curve segment then leaves the first line segment with the same tangent direction 
and then linearly changes direction to reach the second line segment in the same manner. Clearly 
this linear direction change causes the curve to stay within the triangle and thus to satisfy the 
convex hull property. While the same convexity property arose from the two distinct methods in 
this special case, the differences rapidly appear as we leave this case. In the most direct sense, as we 
increase the local control point dependency beyond three, the size of the convex hull can grow 
rapidly. This growth is common and is often quite dramatic. The concurrent requirement that the 
curve lie within it, however, is then greatly weakened. By contrast, the direct control of tangent 
directions does not experience such a weakening. It also does not necessarily satisfy a convex hull 
property, although departures therefrom are not large. 

In addition to the above noted distinctions, there is also the issue of generality. This arises from 
the somewhat rigid confines of Bezier and B-spline methods in comparison with the flexibility 
that is available with the multisurface method. The rigidity comes from the restrictions to the use 
of only Bernstein polynomials for Bezier methods and (usually cubic) B-splines for B-spline 
methods. These specific choices are also tied to the number of local control points and appear as a 
further restriction; namely, that the degree of the polynomial or assembled polynomials is set. In 
contrast, the multisurface method is not restricted in this manner. There the process of vector field 
interpolation is performed without tying down the choice of interpolation functions. The only 
constraining condition is that the choice be taken in the canonical fashion whereby the function 
for a given interpolation point is non-zero there but vanishes at all other interpolation points. The 
inherent flexibility is clearly evident: the choice can be taken in many forms. This can appear as 
polynomial or piecewise polynomial constructs as in the Bezier and B-spline methods. While 
there are a multitude of possibilities with polynomials and pieces of them, there are yet further 
choices which, for example, can be put together with trigonometric and hyperbolic functions, just 
to mention a few other possible constructive elements. 

A discussion of Bezier and B-spline techniques can be readily witnessed in the computer 
graphics literature and corresponding texts. The most notable source there is the text by Foley 
and van Dam.4 Their emphasis is reflective of their field and, accordingly, is placed within the 
context of 4 x 4 matrix operations. In that format the interest is in fast recursive operations to 
evaluate the successive points of a cubic curve. The mathematics there is brief and is clearly 
restricted to cubic polynomials. Aside from some illustrations, the convex hull property is not at 
all developed there. To  examine the spirit of the analysis behind the convex hull property, the 
reader is referred to the work of Gordon and Riesenfeld’ where the property is developed for 
B-spline methods. 

THE CONTROL POINT FORMULATION IN TWO DIMENSIONS 

The control point array is a sparse grid-type arrangement of locations in physical space with an 
index for each direction. In two dimensions it will be denoted by (Cij). Along each sequence of 
control points, a multisurface construction can be performed, and this in effect creates sequences 
of curves: there is one for each index value of i orj .  With the multisurface interpolants leading to 
functions C,(r) and H,(t) respectively, the constructed curves are given by 
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(7) 

respectively for j = I ,  2, . . . , M and i = 1, 2, . . , , N .  The tensor product form also depends only 
upon the Cij and is given by 

or alternatively by 

The equivalence of the two expressions for the tensor product can be easily checked by inserting 
equations (7) and (8) and reducing each to arrive at the same expansion in terms of the Cap. The 
equivalence means that the tensor product is independent of the order in which the multisurface 
constructions are performed. 

In either form the tensor product is seen to match the Ej or Fi at the extremities of i andj. From 
the t-direction construction with the curves Ej(r) in equation (9), the end conditions immediately 
produce T(r, 1 ) =  E, ( r )  and T(r, M -  l)=EM(r). At the lateral boundary r = 1, each curve E, 
reduces to the corresponding point C as deterrnined by equation (7). As a consequence, equation 
(9) then reduces to the expression of equation (8) with i =  1. This shows that T(1, t)=F,(t). In the 
same manner T(N- 1, t )  = FN(t). Alternatively, the same results can be derived from the 
r-direction construction of equation (10) or directly from the end conditions of both the 
constructions of equations (9) and (10). 

When boundaries are to be specified, the corresponding data appear at the extremities of the 
values for Y and t .  Since the co-ordinate transformations are generally expressed in the form of a 
vector P(r, t )  for the desired positions of all points in physical space, it is also convenient to 
express the boundary specifications in terms of the position vector. Thus the boundaries are 
denoted by P(1, t),  P(N- 1, t ) ,  P(r, 1) and P(r, M -  1). To include the boundaries, the multisurface 
transformation is performed again as above, but now with the actual boundaries inserted. The 
above tensor product forms are then replaced by 

and 

for the r- and t-direction respectively, so that the actual boundaries appear as end conditions. The 
alteration here was just a replacement of the control point boundaries by the actual boundaries. 
As such, the tensor product form is retained in the interior: this appears as the summation in 
equations ( I  1) and (12). Accordingly, these transformations should then also appear as direct 
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boundary variations to the tensor product transformation. To algebraically establish the antici- 
pated variations, the interior summations must first be expressed in terms of the full tensor 
product transformation. With equations (9) and (10) they become 

N - 2  

and 
M - 2  

p = 2  
H p ( t )  [Ep+~(~)-E&r)l=T(r, t)-Hi(t)CEz(r)-Ei(r)l-H~- ,(t)~EM(+EM-,(r)1 (14) 

respectively. Upon substitution, the tensor product transformation is explicitly rendered. With 
some modest cancellation of terms, the desired variations are obtained and are given by 

A(r, t ) = C 1  -Gl(r) l  CP(1, t)-Fl(t)l+T(r, t)+GN-l(r)[P(N- 1, t)-FN(t)] 

B(r, t)=[l -H,(t)l [P(r. l)-E,(r)I+T(r,t)+H,-,(t)[P(r, M -  1)-EM(r)] 

(15) 

(16) 
respectively. In this form the extent of each variation is directly displayed. This appears with an 
adjustment term for each boundary. For example, at the boundary of r =  1 ,  the first term in 
equation (15) yields P(1, t ) - F , ( t ) ,  the tensor product reduces to F,(t) and the last term is 0. The 
result is then a match with P(1, t). On the same boundary each adjustment term in the transverse 
construction of equation (16) must vanish because P(1, 1) and E,(1) match the corner C,,  and 
similarly P(1, M - 1 )  and EM(l) match the corner CIM. This leaves only the tensor product 
contribution which is F,(t). 

Proceeding in the same spirit, all of the boundary evaluations are established for A and B. 
These are displayed along with those of T in Figure 2. In the display each box about A, B and T 
represents the domain of curvilinear variables. This is just the rectangle 1 < r  5 N - 1 by I 5 t 2 
M - 1. The corresponding boundary value is indicated at each side of the rectangle for A, B and T. 
From the values in the figure it is readily witnessed that the simple sum of A + B  includes a 
specified P and a control point form at each boundary, while T always produces a control point 
form. Thus to remove the control point form from the simple sum, one only needs to deduct the 
tensor product form. The result is the Boolean sum 

Q = A + B-T, 

and 

(17) 

which then matches the specified values of P at all boundaries. 

sum stated in equation (17) reduces to a particularly simple form. Altogether, it is given by 
Upon assembly of the constituent parts represented by equations (15) and (16), the Boolean 

Q(r, t )  =T(r, t )  

+c1 -G1(r)I CP(1, t)-F,(t)l 
+ GN - Cp( - 3 t )  - FN(t)l 

which explicitly bears the interpretation of an adjusted tensor product construction. Each of the 
four terms following the tensor product T(r, t )  represents a transfinite conformity to a boundary. 
In the order of appearance, the boundaries are for r = 1 and r =  N - 1 and then for t = 1 and 
t = M - l .  
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P ( r  , M - 1 )  

Figure 2. Boundary values for A, B and T on the domain I 5 r 5 N - I ,  1 st M - 1 

When one employs the local interpolants described earlier and in References 2 and 3, the 
functions Gk(r) and H k ( f )  have only local variations. In the application of equation (18) the effect is 
a local treatment of the boundary conformity, thus leaving a local tensor product treatment in the 
interior. This leads to the utilization of only the control points CiK Variations of equation (18) 
now arise naturally: boundary conformity can be applied selectively. By dropping any con- 
forming term, the associated boundary can be manipulated into any other desired shape. 

APPLICATIONS 

To explicitly examine the control point form of algebraic grid generation, some example 
applications are considered. The first example is that of a control net for a uniform distribution of 
points over a duct type of region. This is displayed in Figure 3 .  All boundaries are specified and 
held fixed, while the control points are determined from an attachment to a known co-ordinate 
transformation. The known transformation was taken as a transfinite interpolation with linearity 
in both the r- and t-direction. While this is a special case of the general theory here, it is also the 
simplest case that just provides us with a relatively uniform grid. The simplicity derives from the 
use of only boundary data. In the example, the control net determined by the simple linear-linear 
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Figure 3. A duct grid (a) and control net (c) that are superimposed in (b). The control net is for a uniform distribution 

transfinite transformation is seen as the heavy lines in parts (b) and (c) in Figure 3, while the 
associated grid is seen as the narrower lines in parts (a) and (b). Because of the boundary 
truncations for Gl(r) ,  G,- l ( r ) ,  H,( t )  and H,- l(t), the determined control net is uniform only in 
the interior and assumes a half of the uniform spacing to reach the boundaries. From the 5 x 5 
control net this half spacing at  the ends is readily observed along each control point curve. The 
consequent grid in parts (a) and (b) of Figure 3 is simply a fairly good approximation to the given 
linear-linear transfinite transformation. 

To depart significantly from the linear-linear transfinite case, one control point is moved 
towards the centre in Figure 4; the other control points and the boundaries remain the same. In a 
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Figure 4. A cluster in the duct grid from the motion of one control point 

parallel fashion the parts of Figure 4 correspond to the earlier parts in Figure 3. The effect of the 
control point motion is seen directly in the grid as the formation of an internal cluster for the 
horizontal co-ordinate curves. Similarly, vertical clusters, pointwise clusters, local Cartesian 
forms and boundary orthogonality may be considered, not to mention other possibilities. 

To display some of the practical capability in iI more complex case, a centre body is inserted. It 
is given in Figure 5. Here the bottom boundary is allowed to move. This is accomplished by 
simply dropping the associated blending term in equation (1 8). Similarly, the adjoining lateral 
boundaries are also permitted to move but only for the purpose of redistribution, not for a new 
geometry. As can be seen, the 12 x 5 control net has points which merge to form corners for the 
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Figure 5. A slope-discontinuous internal body inside the duct and a larger control net to accommodate the body 

centre body. In addition, the control points adjacent to the top fixed boundary are chosen to 
provide boundary orthogonality, as are the control points adjacent to the lateral boundaries. 
Altogether, a smooth grid is generated with boundary orthogonality on upper and lateral 
boundaries and with a modest pointwise concentration about an inner body that possess four 
slope discontinuities. 

To examine the interactive manipulation of a boundary, a succession of control point 
movements is followed up to the stage where a protrusion with a slope discontinuity is created 
and the grid distribution is fairly uniform. Here the action starts from the previous initial grid 
displayed in Figure 3(a), but now with a control net that has eight points across rather than five as 
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before. The net and grid appear at the top of Figure 6. The first action is to drop the term which 
transfinitely blends the bottom boundary in the control point transformation of equation (1 8). 
Although the grid has not yet changed, this action permits the free-form modelling of the bottom 
boundary. The modelling starts with the downward motion of the fourth point across: C14. The 
result is given at the bottom of Figure 6 where a smooth protrusion of the grid has been obtained. 
The next movement creates a slope discontinuity at the bottom of the protrusion as well as 
broadening it. This is displayed at the top of Figure 7. There the fifth control point along the 
bottom, CIS,  has been moved to coincide with the previous fourth point, C,,, as displayed at the 
bottom of Figure 6. Because of the movement, the original bottom boundary segment on the 
right-hand side is now represented by points Cltj through C,, rather than ClS through C18. The 

Figure 6. Free-form modelling : d o n s  on the bottom boundary 



ALGEBRAIC GRID GENERATION 1177 

Figure 7. Free-form modelling actions on the bottom boundary 

consequence is the broadened protrusion and the shorter original segment. Upon inspection, 
however, the grid is not as dense in the protrusion as it is elsewhere. A more uniform grid is 
obtained by moving control points C,,, C,,, C,, and CS3 into the positions indicated at the 
bottom of Figure 7. Accordingly the grid there is certainly more uniform than the grid above it. 
With continued interactive manipulations, the more intricate grid given in Figure 8 is created, in 
which two slope discontinuities have been successively inserted at the bottom so that a flat 
connection appears between them. The consequent grid appears in the form of a bidirectional 
nozzle: flow can enter both the left and bottom boundaries and exit through the right boundary. 
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Figure 8. A bidirectional nozzle grid 

To model a more general configuration, a typical template from a waterways problem is 
considered. This could be either an inlet or a section of a river. The generic requirements are that 
grids conform to various boundary irregularities and permit depth clustering. In these examples 
twelve control points are employed horizontally to treat the irregularities and an extra control 
point is added vertically to bring the total up to six so that lengthwise depth clustering can be 
inserted. To start, the left boundary, r = 1, is designated as transfinite, while the others are taken to 
be open for free-form modelling. This occurs by dropping three of the four transfinite blending 
terms in the transformation of equation (18). After an interactive sequence of movements, the 
configuration in Figure 9 is obtained. On the top the grid and control net are simultaneously 
displayed, while only the grid appears on the bottom so that i t  can be more clearly seen. The three 
free-form boundaries are wavy, as can be typically expected in this circumstance. Upon inspec- 
tion, it is noticed that two slope discontinuities have been inserted. These occur at about the 
centre of the top boundary and about a quarter of the way across the bottom boundary. They 
arose from the control point merges c 6 7  =c6, and c,, = C15. [n addition, near orthogonality has 
also been imposed over most of the boundary. This can be witnessed by the approximate 
boundary orthogonality of the control net together with the corresponding near orthogonality at 
the associated locations. Upon assumptions of deeper water occurring down the centre of the 
region, a horizontal cluster has been inserted. Here the extra control point is employed. This is 
needed because the top and bottom boundaries each require a layer of points for their definition 
and yet another layer for the grid structure (such as orthogonality and spacing) in their vicinity. 
Thus with the extra layer of control points there are two layers available for depth clustering. The 
clustering action comes from bringing these two layers close together. With twelve control points 
in each layer, the clustering can be made to follow a wavy path if desired. A slightly more modest 
choice appears in the figure. 
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Figure 9. A waterways grid 

As a further illustration of the local interactive evolution of this general configuration, further 
modelling is performed with the results appearing in Figure 10. The localness is clearly seen, since 
the grid is only changed above the horizontal cluster which is clearly left intact. At the top of 
Figure 10 most of the last part of the top boundary has been changed. The most noticeable 
features there are the creation of a more severe protrusion, the presence of two slope dis- 
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Figure 10. Further free-form modelling on  the waterways grid of Figure 9 

continuities and the lifting of the far right-hand corner. At the bottom of Figure 9 only one more 
control point, C6,1 is moved to restructure the lifted corner. The localness of that final motion is 
clearly witnessed in the grid: only the grid points within the small domain of dependence of that 
control point are altered. 
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CONCLUSION 

A basic control point form of algebraic grid generation has been established. While the actual 
development only considered specified boundaries, the developmental pattern can be continued. 
The most direct continuation is the inclusion of exact spacing and angle control from the 
boundaries. In most circumstances, however, the control point format here may be quite 
sufficient, since it usually provides a reasonably good approximation to such desired specifi- 
cations. 

Moreover, the three-dimensional form follows the same format. With the capability for a 
distributed field control from rather modest specification requirements, the greatest advantage of 
the method may appear in the context of three-dimensional applications. However, since the 
basic character is most easily seen in two dimensions, we restricted our discussion to two 
dimensions. 
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